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a b s t r a c t 

Plant communities in a stable, long-term state with high sagebrush cover and low desirable perennial

herbaceous cover and/or relatively high invasive annual cover are widespread across the Great Basin and

distinct from areas affected by wildfire. Restoring these areas, collectively called “degraded sagebrush

understories,” and preventing future degradation are management challenges that require maintaining

desirable levels of sagebrush cover while simultaneously increasing understory perennial abundance and

diversity. Defining degradation based on a firm grasp of current and potential vegetation composition is

a fundamental aspect of setting restoration goals and selecting methods. Assigning degraded status to

any given site is also a considerable challenge in many sagebrush landscapes due to widespread (and

long-standing) lack of intact herbaceous plant communities in some landscapes, as well as high interan- 

nual variation in herbaceous community composition (particularly cover). In this manuscript, we provide

a workflow for defining degraded understories and present a framework for identifying restoration ap- 

proaches emphasizing the pathways (causes) of degradation in this system, such as historical cultivation,

inappropriate grazing, invasive species, and drought, as well as the size and extent of degraded areas.

We also describe the relative paucity of well-documented successful restoration approaches for degraded

understories, particularly for one-time restoration treatments. This lack of success may be due to lack of

propagules, potential competition from sagebrush, invasive species, and/or altered soil conditions. Mul- 

tiple restoration treatments in specific sequences and/or years may increase success; however, the ef- 

fectiveness of these techniques is uncertain due to infrequent implementation and rigorous evaluation

across a range of environmental conditions. Due to the extent of degraded understories in Great Basin

sagebrush ecosystems, meeting biome-level conservation goals will likely require additional research to

characterize the types and development pathways of the degraded understories, spatiotemporal recovery

or ongoing degradation patterns, and targeted restoration techniques.

Published by Elsevier Inc. on behalf of The Society for Range Management.

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
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ntroduction 

Large areas of the cold desert sagebrush ( Artemisia sp.) shrub-

ands of North America, an increasingly threatened biome ( Knick

t al. 2003 ; Doherty et al. 2022 ; Smith et al. 2022 ), are catego-
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ion of a proprietary product does not constitute a guarantee or warranty of the
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pproval to the exclusion of other products.
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ized as “degraded understory” vegetation based on the combina- 

ion of abundant native shrubs with a lack of desirable understory

pecies, a state that is generally described as complex and diffi-

ult to restore and manage ( West 20 0 0 ; McIver and Starr 20 01 ;

cIver et al. 2010 ; Dunwiddie and Camp 2013 ; Pyke et al. 2015 ).

his combination of intact native overstory with a depauperate un- 

erstory presents particular management challenges in sagebrush 

cosystems because conservation effort s in the region have fo- 

used on retaining and increasing sagebrush canopy cover. Sage- 

rush is highly vulnerable to fire ( Ziegenhagen and Miller 2009 )

nd recovery is slow and sporadic due to infrequent windows of

avorable weather for recruitment at lower elevations ( Knutson 

t al. 2014 ; Shriver et al. 2018 ). However, lack of native understory

egetation is also a particular management concern in sagebrush 
s is an open access article under the CC BY-NC-ND license
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Figure 1. Sparse understory degraded sagebrush vegetation. Defined as high shrub cover and low tree cover, with sparse herbaceous cover (tree ≤ 5%, shrub ≥ 10%, perennial 

herb ≤ 5%, annual herb ≤ 5%, coordinate system: WGS84). 
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1119
cosystems because herbaceous understories are vital to wildlife

abitat and livestock forage and provide the majority of plant di-

ersity ( Anderson and Inouye 2001 ; Pennington et al. 2016 ). De-

raded sagebrush understories are predisposed to conversion to

on-native annual grasslands if burned, due to lack of competition

ost fire from perennial herbaceous species ( Davies et al. 2012 ;

oyd 2022 ), and are vulnerable to a positive feedback cycle be-

ween increasing annual grass invasion ( Smith et al. 2022 ) and

igher fire frequency ( Balch et al. 2013 ). 

Degraded understories may be extensive across Great Basin

cosystems, with more than 25 0 0 0 km2 (13%) of big sagebrush

 Artemisia tridentata Nutt.) vegetation meeting at least one type

f degraded understory as defined here (Great Basin ecoregions,

ased on functional class cover estimates, range: 5 0 0 0−18 0 0 0

m2 , 3−9%, for details, Figs. 1−3 ). Other rough estimates have de-

cribed the extent of degraded sagebrush as even higher (50%,

est 20 0 0 ). However, as described in subsequent sections, defin-

ng the problem of degraded understories, let alone addressing the

ssue, is complex and associated with multiple knowledge gaps. For

xample, the development of persistent degraded understories are

inked to lack of fire and disturbances, such as inappropriate graz-

ng or cultivation, but may also be the result of historical inter-

ctions with soil and climate factors and/or current trends in cli-

ate change and annual grass invasion ( West 20 0 0 ; McIver and

tarr 2001 ; McIver et al. 2010 ; Dunwiddie and Camp 2013 ; Pyke

t al. 2015 ; Doherty et al. 2022 ; Smith et al. 2022 ). Given the ex-

ensive areas affected, improving understory composition in these

egraded communities may be a key element in maintaining and

nhancing habitat for sagebrush associated species, such as greater
age-grouse (Centrocercus urophasianus), and reducing risk of con-

ersion to invasive grass or bare ground states. However, restor-

ng degraded understories may be more complex than typical post-

re restoration, given the presence of a functional shrub overstory,

nd unknowns with respect to site potential following disturbance

 Dunwiddie and Camp 2013 ). 

Despite the importance of this vegetation state for biome

anagement in sagebrush ecosystems, “degraded understory” is 

efined in various ways. Here, we define degraded understories as

reas with long-term (stable) community composition with moderate

o high abundance of sagebrush species ( Artemisia L.) and low relative

nd/or absolute desirable herbaceous species abundance compared to

eference sites ( Fig. 4 ). Non- Artemisia species may be part of the

igh overstory shrub cover in some circumstances. We also allow

or a broad definition of desirable herbaceous species based on

eference site composition and possibly management goals. For

xample, both annual and perennial herbaceous species may be in-

luded in the “desirable” category in some circumstances, whereas

erennials alone may be considered in others. Non-native seeded

as compared with invasive) species, generally perennial grasses,

ay be considered desirable or neutral in some management sce-

arios. Divergence in community composition relative abundance 

nd/or species identity, not just functional group abundance from

eference sites, may also be an indicator of degraded states in spe-

ific areas. For example, high relative cover of disturbance-tolerant

erennial grass (e.g., Sandberg’s bluegrass, Poa secunda Vasey)

ompared with the later successional, typically dominant larger

erennial grasses (e.g., bluebunch wheatgrass, Pseudoroegneria 

picata [Pursh] A. Löve) could suggest understory degradation even
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Figure 2. Annual-dominated understory degraded sagebrush vegetation. Defined as high shrub cover and low tree cover, with high relative abundance of annual species (tree 

≤ 5% shrub ≥ 10%, annual herb−perennial herb ≥ 2). This definition is linked to the earlier threat-mapping definitions in Oregon sagebrush steppe with similar methods but 

uses a higher threshold for the annual-to-perennial ratio (annual−perennial ≥ 1, Creutzburg 2021 ; Oregon SageCon Partnership 2021 , coordinate system: WGS84). 
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1119
ith high total perennial herbaceous cover. We focus on three sub-

ypes of degraded states included in previous research with unique 

haracteristics based on the total herbaceous cover and invasion: 

) sparse understories (low herbaceous cover, mostly bare ground); 

) annual invasive-dominated understories (based on relative an- 

ual to perennial abundance, irrespective of total herbaceous abun- 

ance); and 3) annual invasive-dominated understories with ex- 

remely low perennial cover ( Dunwiddie and Camp 2013 ; Johnson

t al. 2019 ). 

Our objectives are to 1) describe why the understory degra- 

ation concept in sagebrush ecosystems must be anchored in 

omparison with reference conditions specific to that site’s en- 

ironmental characteristics and based on stable (rather than 

ransitory) states. 2) We also illustrate how differing definitions 

ffect effort s to quantify the problem of degraded understories. 

owever, definitions and mapping, while important steps at the 

iome scale, are not sufficient to meet conservation goals. There- 

ore, we 3) demonstrate that this complex issue requires that 

anagers and researchers consider the causal factors leading to 

egradation via different pathways, trends suggesting recovery or 

urther degradation, and changes in site potential due to altered 

oils or climate change. We also 4) present a simple framework

or restoration decision making based on historical factors, cur- 

ent site potential, and spatiotemporal scale. Finally, we explain 

ow acknowledging the complexity of understory degradation in 

agebrush ecosystems is more likely to lead to effective and trans-

erable restoration and management approaches with associated 

ositive impacts on biome-wide conservation. 
Degraded understories” must be stable and altered relative to 

eference conditions 

Planning restoration attempts and/or changes in management 

or suspected degraded understory sites in sagebrush ecosystems 

hould involve defining degradation based on long-term degraded 

tates and comparison to reference sites (see Fig. 4 ), as generally

ecommended for ecological restoration planning ( Aronson et al. 

993 ; SER International Science & Policy Working Group 2004 ;

iller and Hobbs 2007 ). Mischaracterizing sites as degraded (or 

ot degraded) has the potential to lead to wasted resources given

he large areas of potentially degraded vegetation in the sage- 

rush biome. However, climate and soil factors drive widespread 

ariation in composition and functional cover across intact big 

agebrush vegetation ( Passey et al. 1982 ; Pennington et al. 2017 ;

ennington et al. 2019 ), which complicates the task of locating

uitable reference communities. Even at smaller ecological or spa- 

ial scales, understory herbaceous communities can diverge widely. 

or instance, intact higher-elevation big sagebrush (ssp. vaseyana 

Rydb.] Beetle) communities have 4.0 and 1.8 times the peren- 

ial forb canopy cover and diversity of intact lower-elevation big 

agebrush (ssp. wyomingensis ) in eastern Oregon ( Davies and Bates

010a ; Davies and Bates 2010b ). In the same region, topography

nd soils combine to influence orders of magnitude variation in 

ative perennial grass (13−24%) and forb (0.3−5%) abundance even 

ithin lower elevation big sagebrush (ssp. wyomingensis ) commu- 

ities ( Davies et al. 2006 ; Davies et al. 2007 ; Bates and Davies

019 ). 
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Figure 3. Annual-dominated understory degraded sagebrush vegetation with low perennial abundance. Defined as high shrub cover and low tree cover, with high relative 

abundance of annual species, as in Figure 4 , but with the additional limitation of low (absolute) perennial abundance (tree ≤ 5%, shrub ≥ 10%, perennial herb ≤ 5%, annual 

herb−perennial herb ≥ 2, coordinate system: WGS84). 
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For some sites and regions, locating appropriate reference con-

itions based on soil and climate for direct comparisons may be

ifficult to impossible, due to lack of nearby intact sagebrush veg-

tation, particularly for large degraded lower-elevation sagebrush

reas and/or less common soil or vegetation types. In these cases,

cological site descriptions and local knowledge may assist with

enerally describing site potential cover for a specific geographic

ocation, soils, and climate ( Bestelmeyer et al. 2016 ). Functional

roup cover values from remote sensing platforms may also be

elpful in defining degradation (e.g., Rangeland Analysis Platform,

llred et al. 2021 ). As remote-sensing tools improve and allow

or finer-scale and species-specific maps, understory composition

s likely to become easier to track over time and space at smaller

patial resolutions and with greater accuracy. However, interpret-

ng these data to identify degraded sites will still require managers

nd researchers to articulate their assumptions regarding historical

eference conditions by constraining expectations based on rele-

ant environmental variables (such as soils and climate). 

High weather-driven variation in herbaceous abundance and 

iversity across years is common in sagebrush ecosystems even

n the absence of disturbance ( Passey et al. 1982 ; Sneva 1982 ),

eading to the potential for inaccurate classification (degraded

r nondegraded) with one-time measurements. For example, 

onitoring in 1 dry yr could lead to anomalously lower abun-

ance and cover estimates for herbaceous species compared with

ong-term averages ( Passey et al. 1982 ; Copeland et al. 2022 ).

onitoring at inappropriate windows during the growing season

s also problematic and likely to underestimate perennial forbs,

articularly early season and/or geophyte species ( Endress et al.

022 ), which are the majority of herbaceous diversity in sagebrush

cosystems and critical habitat components for sagebrush obligate
ildlife like sage-grouse ( Pennington et al. 2016 ). Other understory

pecies, like bunchgrasses, may be more readily observed across

easons than forbs, (though cover will vary). Weather-driven cover

uctuations can be partially accounted for by identifying year

ffects with long-term monitoring in similar sites ( Applestein et al.

021 ) and/or remote sensed functional group cover variation (e.g.,

angeland Analysis Platform, Allred et al. 2021 ). Slow recovery

rends post disturbance may be difficult to identify given high

eather-driven variation in sagebrush ecosystems ( Anderson and

nouye 2001 ), suggesting that defining stable degraded states

ould require a minimum of several monitoring years with

ifferent weather conditions. 

ariable definitions alter estimates for degraded understories across 

agebrush ecosystems 

Here we show how vastly different estimates of the extent

nd distribution of degraded vegetation within sagebrush ecosys-

ems result from the three general types of degraded under-

tories described earlier: low herbaceous cover, annual invasive-

ominated, and the subset of annual invasive-dominated sites with

xtremely low perennial cover. To ground our perspective on cur-

ent frameworks used in sagebrush management planning, we

losely followed definitions used in recent landscape-level esti-

ates ( Creutzburg 2021 ; Doherty et al. 2021 ; Johnson et al. 2019 )

reated with remote-sensing estimates of functional group cover

2016−2020, 30-m pixels, Rangeland Analysis Platform, Allred et al.

021 ). We limited our estimates to Great Basin ecoregions ( US En-

ironmental Protection Agency 2013 ; EPA Level III, Northern Basin

nd Range, Central Basin and Range, Snake River Plain, NatureServe

018 ) and big sagebrush ( Artemisia tridentata Nutt.) vegetation
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Figure 4. Workflow for defining a degraded understory site. 
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LANDFIRE Existing Vegetation Types, Intermountain Basins Big 

agebrush Shrubland, Intermountain Basins Big Sagebrush Steppe, 

nter-Mountain Basins Montane Sagebrush Steppe, Artemisia triden- 

ata ssp. vaseyana Shrubland Alliance, Wildland Fire Science 2016 ).

e excluded areas with tree cover to avoid including areas altered

y juniper invasion ( > 5%). We selected areas with relatively high

hrub cover ( ≥ 10%) and either 1) a sparse understory ( ≤ 5% an-

ual and/or ≤ 5% perennial herbaceous cover, Fig. 1 ) or 2) high

elative annual to perennial cover ( Fig. 2 , total annual−total peren-

ial herbaceous cover ≥ 2), or 3) high relative annual cover com-

ined with low perennial cover ( Fig. 3 , total annual−total perennial

erbaceous cover ≥ 2 and perennial herbaceous cover ≤ 5%). Note 

hat the annual−perennial ratio threshold employed here (2:1) is 

onservative (an underestimate potentially) compared with the 1:1 

nnual−perennial proportion used for sage grouse habitat quality 

n Oregon ( Johnson et al. 2019 ; Creutzburg 2021 ; Doherty et al.

021 ). Google Earth Engine ( Gorelick et al. 2017 ) was used for all

alculations. 

With those methods, about 13.3% of the sagebrush vegetation in 

he selected ecoregions fit one or more of the degraded understory

efinitions, and the three definitions led to a wide range of extents

nd locations of degraded areas ( Figs. 1−3 ). Approximately 8 300

m2 or about 4.4% of the sagebrush biome met the ‘sparse’ under-

tory definition compared with approximately twice the amount, 
7 600 km2 , or 9.3% of the biome, based on annual dominance

lone ( ≥ 2 annual−perennial ratio). Constraining the annual dom- 

nated definition to areas that also had low perennial herbaceous 

over ( ≤ 5%) reduced the estimated area by 72% to 4 900 km2 , or

.6% of the biome. While this remote sensing analysis illustrates 

he sensitivity of outcomes to definitions for degraded, it does not

ddress the need to include site potential, based on soil and cli-

ate ( Bestelmeyer et al. 2009 ), in “degraded understory” defini- 

ions. The need to incorporate more ecosystem-specific baselines 

or characterizing understory states is urgent, as increasingly large- 

cale efforts are likely needed to address declines in sagebrush 

cosystems ( Doherty et al. 2022 ). Remote sensing cover estimates

re able to illuminate decadal trends with consistent measure- 

ents over broad scales, such as the increasing area of degraded

nderstories, with high relative annual cover, over the past 25 yr

n some parts of the eastern Oregon sagebrush steppe ( Creutzburg

021 ), increasing invasive annual grass cover at higher elevations 

n the Great Basin ( Smith et al. 2022 ), and vegetation responses to

reatments across western US Bureau of Land Management lands 

 Kleinhesselink et al. 2023 ). While relatively coarse in spatial scale

30 m), remote-sensing estimates of vegetation condition can be 

ne-tuned to site potential (e.g., Rigge et al. 2021 ). More detailed

apping may be particularly needed to identify the emergence of 

maller degraded areas located within or adjacent to intact sage- 
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Figure 5. Framework for assessing restoration options for different types of degraded understory sagebrush sites. 
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1119
rush habitat that may be priorities for protection and/or treat-

ent ( Creutzburg et al. 2022 ). 

athways to degraded understory states 

Low understory perennial abundance in sagebrush communi- 

ies could be due to a number of individual and combined fac-

ors, including long-lasting impacts of historical disturbances, espe-

ially those that cause major shifts in soil fertility, texture, or struc-

ure ( McLendon and Redente 1990 ; McLendon et al. 2012 ; Gasch

t al. 2014 ) with pathways indicated by community characteristics,

articularly invasive annual dominance ( Johnson et al. 2019 ; West

0 0 0 ). Degraded understories are also likely to arise from differ-

nt conditions than those associated with loss of dominant shrubs

n sagebrush, such as wildfire or other human and natural agents

eading to widespread die-offs of specific shrub species, such as

roga moth outbreaks ( Kirkland 1972 ; Bolshakova and Evans 2016 ),

ooding ( Ganskopp 1986 ), or various sagebrush/woody removal

reatments. Identifying potential mechanisms or pathways and 

eparating degraded states by their key characteristics are impor-

ant because they may indicate different effective management in-

erventions ( Fig. 5 ). 

oil disturbance from tilling and plowing 

Soil disturbances related to an array of land-use and manage-

ent activities, including plowing, discing, drill seeding, chain-

ng, mining, and energy development construction, are associated

ith understory degradation in Great Basin sagebrush ecosystems

 Rickard and Sauer 1982 ; Morris and Rowe 2014 ; Avirmed et al.

015 ; Morris et al. 2016 ; Monaco et al. 2018 ; Kulmatiski and Beard

019 ; Dunham-Cheatham et al. 2020 ). Cultivated agriculture is one

ocumented source of long-lasting imprints on vegetation compo-
ition and structure in the Great Basin, due to widespread fail-

res in dryland agriculture in the early 1900s ( Morris et al. 2011 ;

orris and Rowe 2014 ). Soil disturbance legacy effects can be diffi-

ult to recognize where land use and ownership has changed, such

s in cases where cultivated homestead properties were returned

o federal ownership, although historical records for certain types

f transfers are available ( Morris 2011 ). Soil disturbances such as

lowing associated with seeding and/or sagebrush removal dat-

ng from the 1940s are also widespread on federal lands in the

reat Basin, such as those managed by the Bureau of Land Man-

gement (Land Treatment Digital Library, Pilliod and Welty 2013 ;

illiod et al. 2017 ). Historical land use involving substantial soil

isturbance may be more likely to be a factor in degraded areas

ith flatter topography, increasing access and feasibility for seed-

ng equipment, and signs of historical seeding such as stands of

on-native perennial grasses. 

mproper grazing 

A frequently mentioned mechanism for understory degradation 

s inappropriately heavy, repeated growing season livestock grazing

 West 20 0 0 ; McIver and Starr 20 01 ). Livestock grazing can limit

ecruitment and increase mortality rates for herbaceous species if

mproper stocking rates and timing of use result in repeated re-

oval of vegetative and reproductive plant tissues, leading to ele-

ated mortality rates and decreased recruitment in bunchgrasses

 Laycock 1967 ). Additionally, soil disturbance from heavy tram-

ling and increased bare ground with loss of perennial cover can

ead to erosion, with long-term effects on soil properties, partic-

larly in sites with combinations of soil and climate factors such

s erosion-prone soils, low plant cover, and dry climate like those

ound in southeastern Utah ( Neff et al. 2005 ; Fernandez et al.

008 ; Duniway et al. 2018 ). 
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Long-lasting degradation due to the combined impacts of direct 

herbivory) and indirect (soil-related) disturbance factors is par- 

icularly associated with legacy, historical grazing patterns in the 

agebrush ecosystem ( Laycock 1967 ; Yeo 2005 ). Current and his-

orical grazing management approaches in the Great Basin differ 

roadly in terms of livestock species (sheep, cattle, and horses); 

tocking rate; and timing, all of which are related to whether

r not livestock grazing is associated with degradation ( Holechek

981 ). Similar rates of herbaceous recovery in exclosure and cur-

ently grazed areas after shifting to more moderate livestock graz- 

ng demonstrate the differences between historical and current 

ractices ( Courtois et al. 2004 ; Copeland et al. 2021 ). 

nteractive effects of climate, soil type, and disturbance on 

egradation 

Temporally or spatially variable factors, like weather extremes 

nd soil type, may amplify the effects of disturbance. For instance,

rought could amplify the effects of higher grazing intensity on 

agebrush understory communities ( Anderson and Inouye 2001 ). 

lternatively, site factors like soil type may largely control the ef-

ects of disturbance. For example, a comparative study of paired

ultivated and uncultivated sites showed that ecological site, asso- 

iated with soil type, largely affected long-term forb community 

ecovery ( Morris et al. 2011 ). These interactions may be difficult to

isentangle yet important for assisting in management to prevent 

r reverse degradation. 

hrub interactions with understory vegetation 

While sagebrush is a desirable native species in sagebrush 

cosystems, at high densities Artemisia species may maintain de- 

raded states by competing with understory plants, particularly 

rasses ( Cook 1963 ; Boyd and Svejcar 2011 ). Consistent with vari-

ble effects of shrubs on understory restoration observed in other 

ystems ( Gomez-Aparicio 2009 ), sagebrush canopy effects on un- 

erstory species range from positive to negative in various cir- 

umstances ( Huber-Sannwald and Pyke 2005 ; Poulos et al. 2014 ;

olthuijzen and Veblen 2015 ; Koutzoukis et al. 2023 ). Competitive

ersus facilitative effects of sagebrush on understory abundance 

re associated with combinations of sagebrush cover ( Huber- 

annwald and Pyke 2005 ), abiotic environment, such as rainfall

 Holthuijzen and Veblen 2015 ), and understory species identity 

 Koutzoukis et al. 2023 ). 

raming the options for restoration and recovery of degraded 

nderstories 

We suggest at least four elements to include in a framework for

electing management approaches for degraded understories (see 

ig. 5 ). Sites with a history of severe soil disturbance should be

dentified because adjusted restoration targets and/or methods to 

meliorate altered soil properties may be required. Areas should 

e separated based on invasion by competitive non-native species 

s opposed to areas with sparse, but native dominated, under- 

tories, because these are separate conditions, potentially arising 

rom different site disturbance histories, and often requiring dif- 

erent restoration approaches. Finally, the extent and proximity to 

ntact sagebrush communities are related, and important, consider- 

tions given dispersal constraints for many native species. Seeds 

rom native understory species are much more likely to arrive, 

nd at higher rates, into small degraded sites surrounded by intact

egetation. In contrast, native species dispersal into degraded sites 

t long distances from intact vegetation, such as within large de-

raded landscapes, is likely to be low. Definitions for the size (large

s. small) of degraded areas and their distance from intact sites
re not simple, given limited information on dispersal distances 

or sagebrush understory species. Big sagebrush, for example, dis- 

erses relatively rarely to distances > 20 m, despite the production

f tens of thousands of seeds per individual shrub ( Applestein et al.

022 ). 

Reestablishing high-quality herbaceous communities in de- 

raded understory sites may require multiple, coordinated man- 

gement interventions including both shrub reductions and 

eedings ( Davies and Bates 2014 ; Davies et al. 2021 ), perhaps in

atches or strips within larger areas ( Hulvey et al. 2017 ), and

s seldom attempted ( Dunwiddie and Camp 2013 ). Restoration 

reatments mentioned as potentially effective include various com- 

inations of mechanical, herbicide, and selective grazing (e.g., fall 

heep grazing) methods for sagebrush reduction combined with 

ultiple seedings of herbaceous species and herbicide treatments 

or invasive species ( Laycock 1991 ; McIver et al. 2010 ). However,

ach type of treatment involves choices among many potential 

ethods and associated variability in outcomes and uncertainty 

egarding effectiveness ( Munson et al. 2020 ; Shaw et al. 2020 ).

ultiple coordinated treatments in an adaptive management 

ramework may be successful, for instance, in encouraging desir- 

ble perennial species over annual species via a series of herbicide

nd seeding treatments ( Sheley et al. 2006 ) and/or timing of

eedings with weather conditions like high soil moisture during 

stablishment ( Chambers et al. 2014 ; Schantz et al. 2019 ; Young

t al. 2017 ). Such sequential and/or targeted approaches are not

roadly adopted or standardized (e.g., uncommon in documented 

arge-scale Bureau of Land Management treatments, Pilliod et al. 

017 ), perhaps due to the timeframes and costs required combined

ith a lack of well-supported, consistently favorable outcomes. 

owever, less complex restoration methods for degraded sage- 

rush understories are often unsuccessful. For instance, attempts 

o restore degraded sagebrush by reducing sagebrush cover and 

eeding with heavy equipment increased invasive annual abun- 

ance, though perennial herbaceous species also increased slowly 

 Davies and Bates 2014 ; Davies et al. 2021 ). At lower-elevation

ites, increases in fine fuels with sagebrush reduction may in- 

rease fire risk and potential for conversion to an invasive annual

rassland ( Chambers et al. 2021 ). Little information is available

n the effectiveness of high-diversity seedings, which may be 

equired for degraded understory habitats, particularly for forbs, 

nd at relevant scales and methods for landscape level restoration 

but see Ott et al. 2019 ; Davies and Boyd 2021 ; Ott et al. 2022 ).

dditional research on effective methods for seeding diverse seed- 

ixes is urgently needed as the use of native species in the region

teadily increases ( Pilliod et al. 2017 ) in tandem with efforts to in-

rease native seed availability for largescale use ( McCormick et al.

021 ). 

Sagebrush reduction in particular may be an effective method 

or restoring understories in localized areas, as well as specific 

ites, though results vary. This management option also contrasts 

ith regional goals to increase sagebrush cover where frequent, 

arge fires have led to widespread losses. Sagebrush cover re- 

uctions with various mechanical or herbicide methods are not 

ovel and were a common method for improving forage cover 

n sagebrush vegetation over many decades in the Great Basin 

 Pilliod et al. 2017 ) and adjacent ecosystems ( Copeland et al.

018 ). However, historic sagebrush reduction treatments were 

ntended to improve livestock forage and/or address soil erosion 

nd frequently combined with seeding non-native grass species 

e.g., the landscape-scale treatments, southeastern Oregon, Vale 

angeland Rehabilitation Program, 1952−1973, 2 050 km2 , Heady 

nd Bartolome 1977 ), in contrast with more recent sagebrush 

eduction treatments linked to more complex goals, includ- 

ng restoring diverse understory communities (Utah Watershed 

estoration Initiative, Riginos et al. 2019 ). Widespread sagebrush 
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eduction for forage has been largely replaced in recent decades

y large-scale attempts to increase sagebrush cover via seeding

nd transplants in response to widespread losses with increasing

ildfire frequency and severity. Big sagebrush is a focus of postfire

estoration efforts because the species is readily killed by fire

nd has a short-lived seedbank, with episodic and often limited

ecovery ( Ziegenhagen and Miller 2009 ) tied to favorable weather

onditions ( Shriver et al. 2019 ; O’Connor et al. 2020 ). The effects

f sagebrush reduction on wildlife habitat range from unfavorable

 Smith and Beck 2018 ) to neutral ( Davies et al. 2021 ) to positive

 Olson and Whitson 2002 ; Riginos et al. 2019 ). Negative impacts

f sagebrush reduction treatments appear to be more likely in

he short term ( Copeland et al. 2019 ) and in drier compared with

etter big sagebrush communities ( Wilder et al. 2019 ). Outcomes

f sagebrush reduction may also depend on the potential of herba-

eous species to respond, which is likely to vary with functional

roup and site characteristics ( Boyd and Svejcar 2011 ; Pyke et al.

014 ; Riginos et al. 2019 ; Chambers et al. 2021 ). 

ecovery and the spatiotemporal scale of understory degradation and 

hange in site potential 

The shape and temporal scale of both degradation and recov-

ry trajectories remain unclear in sagebrush ecosystems, particu-

arly given climate change and the increasing abundance of highly

ompetitive invasive species. Great Basin sagebrush understories 

re dominated by perennial herbaceous species, some with decadal

ifespans ( Liston et al. 2003 ; Lauenroth and Adler 2008 ) repre-

ented at only relatively low abundance in seed banks, particu-

arly after disturbance such as historical cultivation ( Bernards and

orris 2017a ) or fire and/or significant invasion by annual grasses

 Humphrey and Schupp 2001 ; Martyn et al. 2016 ; Barga and Leger

018 ). Degraded understories may eventually recover over long

imescales in the absence of ongoing disturbance (passive restora-

ion) and invasive annual grasses, with rate of recovery dependent

n site abiotic characteristics and historic soil disturbance ( Morris

t al. 2011 ; Morris and Leger 2016 ; Bernards and Morris 2017b ;

onaco et al. 2018 ; Condon et al. 2020 ; Copeland et al. 2021 ).

eather trends during key periods related to establishment are

ikely to be especially influential for recovery of some species, par-

icularly in drier sites ( Anderson and Inouye 2001 ). However, even

f recovery is occurring, it may be unacceptably slow to meet man-

gement objectives in landscapes where degraded understories are

idespread and persistent. For example, several years to a decade

f cattle grazing removal was not associated with recovery in de-

raded understory herbaceous communities ( Davies et al. 2014 ;

avies et al. 2016 ; Thomas et al. 2022 ). However, recovery did oc-

ur over decades in another site where legacy heavy-grazing prac-

ices led to a degraded understory ( Sneva et al. 1984 ; Copeland

t al. 2021 ). This contrast in results could suggest either extremely

low recovery trends (not detectable in shorter-term studies), due

o low dispersal rates and depauperate seed banks, or limited re-

overy associated with the ongoing dominance of big sagebrush.

aiting for recovery (passive restoration) may also be undesir-

ble because degraded understory sites may persist on borrowed

ime, a wildfire away from rapid conversion to an annual grassland,

n undesirable state with additional barriers to recover ecosystem

unction ( Davies et al. 2012 ). In contrast, competitive understory

pecies like large perennial bunchgrasses in intact understories can

revent or limit annual grass dominance post fire ( Chambers et al.

007 ; Wainwright et al. 2020 ). Many sagebrush understory species

ay require dispersal to align with suitable environmental condi-

ions in order to successfully colonize degraded sites, due to their

nfrequency in the seed bank, particularly following long time pe-

iods of absence. As a consequence, the size and spatial arrange-

ent of degraded understory areas may be influential, with recov-
ry of larger degraded areas likely to take longer than in smaller

reas adjoining intact sagebrush plant communities with diverse

nd abundant herbaceous understories. 

Climate change and the contemporary presence of invasive an-

ual grasses in most sites may have altered site potential in parts

f the sagebrush ecosystem ( Palmquist et al. 2021 ), particularly in

he presence of more frequent fire ( Ellsworth et al. 2020 ). Many

nderstory species can resist invasion by annual grasses and are

esilient to severe weather, and even directional climate change

rends once established. It is unclear, however, if changed envi-

onmental conditions allow for reestablishment of formally suit-

ble species in many sites and to what extent divergent functional

r species composition benchmarks are needed. Vegetation shifts

n sagebrush ecosystems linked to climate change include increas-

ng annual herbaceous cover and production across broad areas

 Kleinhesselink et al. 2023 ) and the movement of invasive annual

rasses to higher elevations ( Tang et al. 2015 ; Smith et al. 2022 ).

redictions for future climate change impacts include widespread

osses in perennial C3 grasses and perennial forbs in sagebrush

cosystems ( Palmquist et al. 2021 ). Vegetation targets for under-

tories chosen for future climate, as opposed to past climate, may

e more achievable. Benchmarks based on climate change futures

ight alter restoration approaches in degraded sites by, for exam-

le, suggesting species for seeding based on suitability for current

nd future climate ( Butterfield et al. 2016 ). 

Altered soil conditions (e.g., shallow soils) due to tilling or other

auses of soil erosion can have severe, long-term implications on

ite potential and recovery trajectories ( Morris et al. 2011 ; Bernards

nd Morris 2017a ) and are unlikely to improve quickly due to mil-

ennial timescales of soil development in the Great Basin ( Harden

t al. 1991 ). Therefore, the outcomes of passive recovery in sites

ith altered soil conditions are unlikely to quickly mirror undis-

urbed reference sites ( McLendon and Redente 1990 ; Morris et al.

011 ; Avirmed et al. 2015 ). Legacy effects such as differences in soil

utrient concentrations and heterogeneity can remain for decades

 Morris et al. 2011 ; Morris et al. 2013 ; Morris et al. 2016 ). Restora-

ion approaches may need to account for these changed conditions

ia species selection, amelioration methods for altered soils, and

djusted restoration goals. 

In general, sagebrush ecosystem understory communities di- 

erge by climate and edaphic gradients at various spatial scales

 Passey et al. 1982 ; Davies et al. 2006 ; Davies et al. 2007 ; Davies

nd Bates 2010b ; Pennington et al. 2017 ; Pennington et al. 2019 ).

ome native perennial species are less tolerant to certain types

f disturbance than others; for example Phlox hoodii Richardson

 woody low-growing species with aboveground growth points,

as particularly slow to recover from historic cultivation ( Morris

t al. 2011 ). Similarly, some native species may be much more dis-

ersal limited than others, and most perennial native species in

agebrush steppe do not appear to be highly persistent in seed

anks ( Martyn et al. 2016 ; Bernards and Morris 2017a ; Barga and

eger 2018 ). This variation in response to altered environmental

onditions and disturbance among species implies that in sites

here understory diversity and abundance are especially low com-

ared with reference sites, multiple conditions are likely interact-

ng to prevent understory vegetation from recovering. Similarly,

reatment methods that fail to consider this variation in species

haracteristics are likely to be only partially successful. 

reventing further degradation 

Given limited capacity for broad-scale restoration of degraded

nderstory communities (due to the intensive effort s that would

e required), preventing additional degradation of the sagebrush

cosystem should be a management emphasis ( Davies et al. 2011 ).

or example, managers may want to avoid widespread soil distur-
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ance in sites susceptible to long-lasting soil alteration and asso- 

iated lack of recovery ( Morris et al. 2011 ; Duniway et al. 2015 ).

roactively identifying and correcting negative trends in under- 

tory condition, for instance, with recent remote-sensing trends at 

arly stages could prevent the need for the intensive management 

ffort required to address severe and widespread degradation. 

onclusion 

Overall, the state of knowledge regarding degraded understories 

n the sagebrush ecosystem may be insufficient to suggest con- 

rete management approaches to the problem. For example, lit- 

le is known regarding the relative role of seed dispersal distance

nd environmental thresholds for natural recovery in the sage- 

rush ecosystem, particularly in the context of widespread inva- 

ive species. Larger areas of stable (persistent) degraded understory 

agebrush may require special attention, particularly where adja- 

ent to intact, higher-diversity plant communities. Nonweather fac- 

ors limiting herbaceous native perennial colonization and growth 

ay be indicated where degraded understory states persist for 

ong time periods including over multiple favorable weather pe- 

iods for native perennial species recruitment. Identifying these 

actors is likely an important step for deciding among potential 

estoration strategies, as well as managing this vegetation state in 

eneral. For instance, altered soil properties and/or invasive annual 

rass competition could lead to lower site potential, representing 

n environmental threshold that is difficult to reverse ( Harris et al.

006 ; Bestelmeyer et al. 2009 ). However, correctly identifying such

hresholds is a complex and uncertain task ( Suding and Hobbs

009 ; Bestelmeyer et al. 2013 ), particularly in dryland systems, like

reat Basin sagebrush vegetation, where recovery trends are rela- 

ively slow. In contrast, degraded understory sites where slow re- 

overy is taking place may require little to no active restoration,

hough large areas may require island seedings ( Hulvey et al. 2017 )

f dispersal limitation is playing a significant role ( Marlette and An-

erson 1986 ). 

Research is needed to understand divergent pathways related 

o various types of degraded understory in the sagebrush ecosys- 

em, given their extent and associated importance to conservation 

f the sagebrush biome. Site factors like spatial configuration (rel- 

tive to intact understories), disturbance history, invasive abun- 

ance, and current site potential for herbaceous community com- 

osition may lead to distinct states, requiring divergent manage- 

ent approaches, such as natural recovery versus active restora- 

ion. Whether current degradation patterns and processes will re- 

emble historical pathways is a particularly pressing question for 

esearch. Present-day sagebrush ecosystems are experiencing shifts 

n climate, including increasing temperatures and both higher pre- 

ipitation and drying in different parts of the region ( Tang and

rnone III 2013 ; Tang et al. 2015 ; Xue et al. 2017 ; Snyder et al.

019 ; Zhang et al. 2021 ), and ongoing annual grass invasion ( Smith

t al. 2022 ). These altered environmental characteristics may mean 

hat novel degraded states are possible, further complicating ef- 

orts to understand effective management and restoration. Even in 

he face of change and uncertainty, embracing the inherent com- 

lexity of species composition, associated environmental gradients, 

nd land-use patterns is the best path toward identifying effec- 

ive targeted approaches to promote resilient, diverse, and abun- 

ant understory vegetation in sagebrush ecosystems. 
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