Approximate Week
1. Getting organized.
 • Orientation to the class: lectures, quizzes, prep for class, lab kits, computational project
 • History of vadose zone understanding, relationship to saturated media.
 • Getting started with HYDRUS-1D

2. An Introduction to the Vadose Zone
 • Primer on soils
 - components of soils
 - soil classification
 - clay mineralogy

3. Introduction to Hydrus.

3. Physical and Hydraulic Properties of Variably Saturated Media
 • Basic definitions
 • Hydrostatics of unsaturated media
 Surface tension
 The characteristic curves
 Hysteresis and the independent domain approach

4. Hydrodynamics in porous media
 Motivation for Darcy's law and a few simple solutions
 Derivation of Richardson-Richards equation

5&6. Flow of Water in the Vadose Zone
 • The classic solutions
 - The Green and Ampt approximation
 The physical model
 Horizontal, vertical, ponded, and falling head infiltration
 - Solutions using Richardson-Richards equation.
 Bruce and Klute equation, the Boltzman transform, sorptivity
 Evaporation from a water table (Gardner, 1958) with
 application of exponential conductivity, diffusivity.
 • Preferential flow processes: capillary barriers, macropores, and fingered flow

7. Miller and Miller scaling and Characterization of soil hydraulic properties

8. Solute Transport in the Vadose Zone
 • Goal of quantitative approach: coupling mass-transfer and mass transport relations
 • Basic processes: Advection, adsorption, diffusion, transformation, degradation.
 • Transport of decaying solutes in uniformly saturated media: The diffusion equation
 (Linearity, superposition, erf and erfc solutions).
 • colloid transport

9. Three-phase flow
 • Surface tension, spreading pressure, layered menisci
 • Constitutive relations: Pressure-Saturation-Permeability
 • Funicular and residual saturation
 • Special problems with continuum assumptions: non-spreading oil.

10. Preferential flow – Macropore, fingers, and funnel flow processes

Note: Special 3-hour evening session to be held in the week of 9 to present simulation results