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Summary

1. Drylands support over 2 billion people and are major providers of critical ecosystem
goods and services across the globe. Drylands, however, are one of the most susceptible bio-
mes to degradation. International programmes widely recognize dryland restoration as key to
combating global dryland degradation and ensuring future global sustainability, While the
need to restore drylands is widely recognized and large amounts of resources are allocated to
these activities, rates of restoration success remain averwhelmingly low.

2. Advances in understanding the ecology of dryland systems have not yielded proportional
advances in our ability to restore these systems. To accelerate progress in dryland restoration,
we arguc for moving the field of restoration ecology beyond conceptual frameworks of eco-
system dynainics and lowards quantitative, predictive systems models that capture the proba-
bilistic nature of ecosystem response to management,

3. To do this, we first provide an overvicw of conceptual dryland restoration frameworks.
We then describe how quantitative systems framework can advance and improve conceplual
restoration [rameworks, resulting in a greater ability to forecast restoration oulcomes and
evaluate economic efficiency and decision-making. Lastly, using a case study from the western
United States, we show how a systems approach can be integrated with and used to advance
current conceptual frameworks of dryland restoration.

4, Synthesis and applications, Systems models for restoration do not replace conceptual mod-
els but complement and extend these madelling approaches by enhancing our ability to solve
restoration problems and [orecast outcomes under changing conditions. Such forecasting of
future outcomes is necessary o monetize restoration benefits and cost and to maxintize eco-
nomi¢ benefit of limited restoration dollars,
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el af. 2000). While almost a third of the global population
directly depends on drylands for their well-being, low and
variable rainfall, as well as other siressors such as low soil
nutrient availability, makes drylands one of the most sus-

A global need for improving restoration
outcomes in dryland systems

Drylands, which include arid, senti-arid and dry-subhumid

ecosystems, cover 40% of the Earth's land surface and
support over two billion people, many at subsistence level
(Millennium Ecosystem Assessment 2005a). These systems
store more than 45% of the globat terrestrial carbon
(Millennium Ecosystem Assessment 2005b), support 50%
of the world’s livestock (Allen-Diaz e al. 1996) and house
over a third of the hotspots of global biodiversity (hMyers
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ceptible biomes to land degradation and global climate
change (Millennium  Eeosystein  Assessment  2005a;
Reynolds ef ol 2007). Conservative estimates indicate 10—
20% of the global drylands are degraded (MiHennium
Ecosystem Assessment 2005a) with an additional [2 mil-
lion hectares of drylund degraded each year (Brauch &
Spring 2009). Loss of these critical biomes is estimated lo
cost the world US $42 billion a year (Brauch & Spring
2009), reduce dryland potential net primary productivity

© 2013 The Authors. Journal of Applied Ecology © 2013 British Ecological Society




between 4% and 10% (Zika & Erb 2009) and contribute
to about 4% of annual global carbon emissions {(Millen-
nium FEcosystem Asscssment 2005a),

The impacts of dryland degradation on ecosystem
sustainability as well as economic and polilical stability
are widely recognized (Daily 1995; Geist & Lambin 2004;
Verstracte, Scholes & Smith 2009; UNCCD 2012).
National and international programmes identify dryland
restoration as key to future sustainability (Bureau of Land
Management 2001; Brauch & Spring 2009; McBDonald &
Williams 2009; Cao ¢r of. 2011; UNCCD 2012} with many
counlries spending over US 5100 million a year on efforts
to restore dryland systems (United States Govermmentl
Accountability Office 2003; Cao er of. 2011; Merritt &
Dixon 2011}, Despite the widely accepled imporiance of
dryland restoration and relatively large amounts of money
invested in these activities, resloration success rates in dry-
land systems are low (Carrick & Kruger 2007; Valladares
& Gianoli 2007; Hardegree ef af. 2011). In the United
States, tor example, even with application of the most
current scicince, technology and funding models, dryland
restoration success rales are often less than 5% (Sheley
et al. 2011). Thus, while the urgent need for dryland
restoration is widely recognized, and globally, much time
and money is directed towards these activilies, we are
strongly limited in our ability to restore these systems,

Despite decades of research, advances in understanding
the ccology of dryland biomes have not yielded propor-
tional advances in our ability to restore degraded dryland
ecosystems. Here, we propose an approach to accelerate
the development of dryland restoration strategies by
improving the linkages between the science of restoration
ecology and the ability of managers o make practical
improvements in restoration outcomes, Specifically, we
argie for moving the field of restoration ecology beyond
conceptual frameworks of eccosystem  dynamics and
towards quantitative, mechanistic and predictive systems
frameworks that capture the probabilistic nalure of how
ecosystems respond to management, To do this, we first
provide a briel overview of existing conceptual frame-
works of dryland restoration, We then detail the value of
using systems approaches to accelerate our ability to solve
specific restoration problems and make practical improve-
ntents in our restoration outcomes. From this, we outline
how systems approaches can improve our ability {o accu-
rately evaluate the economic efficiency of restoration
efforts, Lustly, using a case study [rom the western United
States, we show how a systems approach can be inte-
grated with and used to advance current conceptual
frameworks of dryland restoration.

Current conceptual frameworks for dryland
ecosystem restoration

Ecological restoration is predominantly focussed on the
recovery of functional plant communities as they have a
controfling influence on energy flows, hydrology, soil
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stability, habitat quality and network dynamics {Young,
Petersen & Clary 2005; Kulmatiski, Beard & Stark 2006;
Munson, Belnap & Okin 2011, Pocock, Evans &
Memmott 2012), As a result, conceptual frameworks for
dryland restoration, as well as restoration ecology in gen-
eral, are largely based on conceptual models of plant
community development and response to disturbance. The
initial conceptual framework for dryland management
and restoration was based on Clementsian succession in
which vegetation dynamics were considered linear, contin-
wous and reversible (Briske, Fuhlendorf & Smeins 2003;
Vetter 2003; Bagchi ef of. 2012). Under this framework,
changes in abiotic or biotlic environmental conditions
through restoration were expected (o yield proportional,
linear chunges in plant community structure (Fig. Ia). Tn
many mesic systems, linear-succession models often ade-
quately predicted vegetation dynamics (Young, Chase &
Huddleston 2001). However, in dryland systems, fAuctuai-
ing abiotic and biotic conditions routinely produce dis-
continvous and nonreversible vegetation changes not
captured by linear-succession madels (Jackson & Bartolo-
me 2002; Sasaki ef al. 2009; von Wehrden et al. 2012).
The failure of linear-succession models to predict effects
of management on dryland plant community dynamics
caused ecologists 10 examine how more contemporary
threshold models and community assembly theory could
be applied to dryland systems to- better predict

(8) Comtinuous linear change

(b) Threshold

{¢) Alternative stable states
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Fig. 1, Ecosystem dynumics models that predict how changes in

- environmental conditions influence ecosystem stale variables A

and B (after Schroder, Persson & De Roos 2095; Suding &
Hobbs 2009). The Continucus Change model (a) predicts gradual
changes in environmental conditions will preduce continuous and
proportional changes in state variables. The Threshold model (b)
predicts little change in state variubles over a broad range of
enviromnentat conditions untii a trigger induces a shift from
negative to positive feedbacks and a rapid shift in states. The
Alternalive Stable States model {¢) predicts threshold dynamics
as in (b) but also predicts that multiple alternative stable states
can persist under similar environmental conditions.
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management outcomes (King & Hobbs 2006; Suding &
Hobbs 2009; Bagchi er of. 2012). These models provide the
theoretical basis for understanding how changes in envi-
ronmental conditions could produce nonlinear, discontinu-
~ous changes in plant community structure and how
different stable plant community states could form under
identical environmental conditions. Threshold models pre-
dict little change in ecosystem structure and function over
a broad range of environmendal conditions uniil a trigger
(e.g. fire, flooding, drought) induces a shift from negalive
to positive feedbacks, which destabilizes ecosystem dynam-
ics and results in a threshold that produces a rapid shift in
ecosystem state variables (e.g. species composition, ecosys-
tein process) (Schroder, Persson & ¢ Roos 2005; Briske,
Fuhlendort & Smeins 2006; Suding & Hobbs 2009)
(Fig. 1b,c) In some cases, shifls belween states are pre-
dicted to be reversible slong the same pathway that leads
to degradation {Fig. 1b). In other cases, the pathway to
restoration is not predicted to be reversible along the same
pathway that led to degradation {Fig. 1c}. Under this lat-
ter scenario, multiple states are predicted to persist under
similar envirommental conditions, Historical contingeneies
that influence priorily effects are thought to be strong
drivers of threshold dynamics (Suding & Hobbs 2009}

The theoretical concepts of alternative stable states,
thresholds, nonlinear dynamics and historical contingen-
cies have been useful in describing vegetation dynamics
under different management and restoration practices
{Hobbs & Suding 2008; Martin & Kirkman 2009; Suding
& Hobbs 2009; Zweig & Kitchens 2009; Bagchi ef ol
2012). A leading aim of dryland restoration ecologists
over the last thirly years has been (o assimilate these theo-
retical constructs into conceptual, practical wodels, to
guide improved restoration of dryland systems., A number
of applied models have been developed te fill this need
{King & Hobbs 2006; Nuttle 2007; Sheley ef of. 2010).
Globally, State-and-Transition models {STMs) have
emerged as the leading conceptual framework to describe
dryland vegetation dynamics over a range of management
and restoration scenarios {(Asefa er af. 2003; Chartier &
Rostagno 2006; Queticr, Thebault & Lavorel 2007; Tietjen
& Jeltsch 2007; Sankaran & Anderson 2009; Standish,
Cramer & Yates 2009) (Fig. 2). These qualitative models

[ Native shrubland I

are flowcharts (hat show potential alternative stable vege-
tation states supported by a particular combination of soil
and climate, as well as possible transitions between states,
Transitions represent thresholds between alternative stable
states that are generally viewed as irreversible without
fntensive management inpuis. Restoration pathways also
are identified in STMs that indicate restoration practices
that can reverse transilions beitween alternalive stable
states. In most cases, identification of potendial alternative
states, possible lransitions, as well as restoration path-
ways, are developed based on management experience and
expert opinion. The values of these conceptual approaches
to dryland restoration are widely recognized and include
the ability of models to accommeodate theoretical compa-
nents associafed with linear succession, alternative stable
states and thresholds, These models also are useful for
organizing management information and commmunicating
complex ccosystem dynamics {o diverse stakeholders in 2
simple form {Bashari, Smith & Bosch 2008; Knapp ¢f af.
2011).

Despite the utility and application of STMs to global dry-
land restoration, there are clear and critical weaknesses in
these and other related conceptual restoration models that
limiit our ability to make practical and sustained improve-
ments to dryland restoration outcomes, Namely, these con-
ceptual models have limited prediclive capability, do not
address management uncertainty and lack the ability to
quantitatively Hnk management to multiple ecological pro-
cesses and mechanisms that ultimately drive ecosystem
change. These constraints greatly limit application of con-
ceptual dryland restoration frameworks 10 scenario analysis
ind evalustion of economic efficiency which, in turn, con-
strain the degree to which these models can be used as deci-
sion support tools (Bashari, Smith & Bosch 2008).

The need for systems approaches in
restoration ecology

The need to move ccology beyond models that are
conceptual, nitthematically descriptive or phenomenologi-
cal and towards process-based models that can be used to
address specific applicd questions is widely recognized
(Sutherfand & Norris 2002; Levin 2005; Coulson ef af.

Fig. 2. General state-and-transition model

Native bunchgrass/ T5

for restoring sagebrush steppe vegetation
in the western United Stades (afier Allen-
Diaz and Burtolome, 1998). Stable states

Non-native
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invasive al grass
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! Invasive annual grass |

0
/ T4
Ti

T7

Native shrubland/

{boxes) represent distinct stable plant com-
munities. Transitions {1, arrows) indicate
T8 thresholds and restoration pathways that
move a plant community form onc stable
state to another. For example, transitions
(T) could include restoration actions

native bunchgrass

Nou-native bunchgrass/
mnvasive annual grass

(e.g. ploughing, herbicide, seeding), man-
agement {e.g. grazing) and envirommental

conditions (e.g. drought, fire).
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2006; Suding & Hobbs 2009; Evans 2012). This need lor
process-based models has become progressively more
urgent in the light of rapid environmental change (Evans
2012}, Systems approaches have long been recognized as a
critical means to fill this need (Watt 1968). Adoption of
these approaches, however, has been Hmited (Norris
2012). Recently, there have been renewed arguments for
and examples of using systems approaches to address
specific, complex problems in ecology (Purves & Pacala
2008; Morin & Thuiler 2009; Butler et af, 2010; Medvigy
& Moorcroft 2012; Norris 2012). A logical next step is to
examine the utility of adopting systems approaches for
ecosystem restoration.

Selecting a modelling approach to solve an ecological
problem involves considering trade-offs between maodel
generality, model realism and model precision (Levins
1966; Odenbaugh 2003; Evans 2012). A systems approach
to solving ecological problems differs philosophically,
structurally and procedurally from other quantitative
maodelling approaches. Syslemis approaches, by definition,
explicitly consider specific characteristics of a particular
system and are thus models focussed on realism and how
a specific system functions (Evans 2012; Evans, Novris &
Benton 2012). In general, a model based on a systems
approach would include mechanisms driving ecological
processes within model components and also would iden-
tify ecological processes that establish hierarchical links
among systeim components (Evans 2012; Bvans, Norris &
Benton 2012; Norris 2012), With this approach, atiributes
of the highest system component in the hierarchy are
quantified as emergent properiies ol madel components
lower in the hierarchy (Evans 2042; Evans, Norris &
Beanton 2012). There are several strengths of a systems
approach over other modelling approaches. As one exam-
ple, in contrast to phenomenological models, systems
models do not need to assume thal model relationships
remain similar across all conditions because they specify
the underlying mechanisms and processes thal drive
model behaviour (Evans 2012). Thus, systems models are
useful for projecling system behaviour under novel condi-
tions such as environmental change (Evans 2012). As a
second example, in contrast to models describing general
mathematical relationships, systems models make realistic
predictions that can be applied to a specific ecological
problem (Evans 2012), Specific predictions allow modei
error, uncertainty and sensitivity to be assessed while afso
identifying key knowledge gaps. Systems models have
demonstrated clear utility in solving mujor ecological
problems including biodiversity conservation, forecasting
ecosystemn response to climate change, as well as for
climate change modelling (Butler ef af, 2010; Evans 2012;
Medvigy & Moorcroft 2012). The field of restoration ecol-
ogy is well poised to adopt these approaches, as has been
done in these other fields. One of the largest benefits of
using quanlitative systems models to forecast restoration
oufcomes is in evaluating economic efficiency of alterna-
tive restoration actions.
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Systemns approaches and the economics of
restoration

Economies plays a central role in restoration ecology
(MNaidoo ef al. 2006; Robbins & Daniels 2012). By quanti-
lying the bLenefits and costs of restoration activities in a
common unit {dollars), economic analysis allows the
economic efficiency of specific restoration projects to be
evalimted and comparcd against alternalive projects,
including the option of deing nothing. Fconomic analysis
also is central in determining where scarce land numage-
ment resources should be directed across the landscape to
maximize expected economic benefit [rom restoration
given relevant Dbiophysical and financial constraints
{(Newburn et «f. 2005; Naidoo et al. 2006). Much of Lhe
literature outlining linkages between restoration and ¢co-
noinics, however, has focussed on how the costs and ben-
efits of restoration should be quantified and how
restoration of critical ecosystem services should be funded
(Holl & Howarth 2000; Aronson ef al. 2010; Robbins &
Daniels 2012). Largely missing from this discussion is
how our ability to develop accurate cost-benefit analyses
entirely depends on our ability to predict restoration out-
comes. In this section, we outline why guantitative models
that allow prediction of restoralion outcomes are
necessury for accurate cost-benefit analysis of specific res-
foralion strategics, including cases where the ultimate out-
come of restoration is uncerfain. As support for this
argumient, we use a case study to demonstrate how resto-
ration success probability influences the expected net eco-
nomic benefits of restoration.

Historically, economic analyses of ecological restoration
in dryland systems have used a number of ad foc
approuaches {expert opinion, conseusus papers, cic.) to
parameterize conceptual ecological models to compare
how ecosystems would change with and without restora-
tion treatments (e.g. Epanchin-Nicll, Englin & Nalle 2009,
Taylor ef al. 2011). These ad hoc methods have a number
of potenlial weaknesses including bias, lack of scientific
support and the fact that different ad hoc methods may
yield different parameter values. Quantitative ecological
models, on the other hand, avoid these limitations and
aliow for more realistic predictions of ecological trajecto-
rics of treatment siles under alternative restoration treat-
menl strategies, including the alternative of not pursuing
any restoration treatiment. The economic benefits of resto-
ration are measured as the difference in the flows of mou-
ctized ecosystem goods and services under the two
alternative ecological trajectories for the site. Success rates
of restoration treatments play a large role in determining
Lheir expected cconomic benefits. Quantilative resloration
modsels allow us to identify how variation or manipula-
tions of certain processes or environmental conditions
influences the likelthood of a successfid restoration out-
come {McBride e af. 2010), This allows mangers and
researchers to conduct sensitivity analysis to determine
which portion of the system can be manipulated to yield
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the largest increase in the probability of a successful
outcome, and, hence, the expected cconomic benefits from
restoration. The ability to account for uncertainty is pur-
ticularly important for the economics of ecelogical resto-
ration, where avoiding instances of the least desired
outcome may be more impartant than the average out-
come when cvaluating the desirability of a specific restora-
tion project. Below we show how quantitative ecological
models that improve our ability to predict restoration out-
comes or increase the probability of restoration success
can greatly advance our ability to assess economic
efficiency of management alternatives and allocate limited
resioration resources,

THE ECONOMICS OF RESTORING DRYLAND
ECOSYSTEMS IN THE WESTERN UNITED STATES

This section presents an example of the economics of
ecological restoration for two dryland ecosystems in the
western United States: the Wyoming Sagebrush Steppe
(WS8) and Mountain Big Sagebrush (MBS) ccosystems,
In both ecosystemis, ecological restoration is focussed on
returning the system from a degraded, invasive grass dom-
inated state, to a heallthy ecological state dominated by
native plants, This example considers the benefits of eco-
logical restoration in terms of a single emergent property
of the ecosysteny: wildfire activity, with degraded invasive
plant-dominated communitics having more frequent and
severe wildfire than healthy native plant-dominated com-
mumnities.

In order to evaluate the economic returns from restora-
tion, an economic simulation model was used that incor-
porates the probability of the plant community
transitioning between healthy and degraded states under
different restoration scenarios. Each run of the simulation
model considers ecosystem change with and withoul resto-
ration treatment over 200 years with different randouly
generated realizations of rundom parameters {wildfire
oceurreinces, treatment success given that treatment is
undertaken, and per heetare wildfire suppression costs) in
cach year. The economic benefit of a restoration treat-
ment is calculated as the present value of the reduction in
wildfire suppression costs resulting from treatment over
the 200-year period less the present value of treatment
costs. A description of the data used to parameterize these
maodels is given in the study by Taylor et al. (2011).

We defermined the bresk-even treatment cost for a
range of treatment success rates for the WSS and MBS
dryland systems (Fig. 3). The shaded region below the
curve contains all of the treatment costfsuccess rate com-
binations for which the economic benefils of restoration
are greater than the costs. The default current restoration
cost is US $408 hectare™" and is based on typical dryland
restoration treatment costs for these systems, including a
combination of prescribed fire, herbicide and sceding
(hetp:/fwww.atnres, usda.govitechnicalftechnology/feconomics/
2011 _cost_data_practices.htmi). At this current per hectare

Wyoming Sagebrush Steppe

600

Current breatment cost $408 ha™'

400 ——————————————

200

| Mountain Blg Sagebrush

Treatment cost (3US ha™")
=]
b=

1800 |

1000 1

500 r

02 0-4 06 08
Treaiment success probability

Fig. 3. The break-even treatment cost for a range of treatment
success rates for the Wyoming Sagebrush Steppe {WSS) aud
Mountain Big Sagebrush (WBS) dryland systems., The shaded
region below the curve contains all of the treatment cost/success
rate combinations for which the cconomic benefits of restoration
are greater than the costs. The default current restoration cost is
US $408 hectare™". At this current per hectare cost, treatment
alternatives in the WSS are economically efticient if success prab-
ability exceeds 0-52, while treatments in the MBS are economi-
cally cfficicnt if success probability exceeds 0-F5. Modified from
Taylor et of, (201 1),

restoration cosi, restoration treatment in the WSS ecosys-
tem is economically efficient only if treatment success rate
exceeds 0-52. In the MBS ¢cosystem, {reatment is ecoromi-
cally efficient with only a moderate sttccess rate of 0-15 or
higher. The break-even restoration treatment cost for a
given treatment success rate is lower for the MBS system
than for the WSS system because the expected benefits from
restoralion are higher in MBS systems. The expected bene-
fits from restoration are higher in MBS systems primarily
because the fire suppression costs in degraded MBS are
higher than in degraded WSS (Fig. 3). In particular, the
expected present value of wildfire suppression costs over
the 200-year period for remaining in the degraded invasive
plant-dominated state is $3577 hectare ™" in MBS compared
with 5985 heclare™! in WSS,

These results demounstrate the need to develop economic
models that incorporate forecasts from quantitative
systems models. These linkages are critical in evaluating
the amticipated economic benefits from restoration and
accounting for uncertainty in how ccosystems respond to
restoration treatments and other management actions,
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Linked economic and ecological models are critical in
considering Lhe economic return of realistic changes in
management strategies that influence both treatment costs
and success rates, In addition, economic models linked to
quantitative ecological models are amenable 1o sensitivity
analysis where the benefits and cost of alternative man-
agement strategics for ecological restoration could be
analysed and compared. While the utility of developing
quantitative models to forecast restoration outcomes and
evaiuale economic efficacy of alternative munagement
actions may be easy to recognize, it may be less clear how
to integrate systems models with current conceptual dry-
tand restoration frameworks. This notion is explored
below using an example of dryland restoration in the wes-
tern United Siates as a case study,

Case study integrating systems models with
conceptual dryland restoration frameworks

Sagebrush steppe rangelands occupy over 36 million hect-
ares in western North America and provide a suite of
goods and service essential for maintaining rural econo-
mies and sustainable agricultural practices key to global
food production. Over 25% of these critical drylands, are
degraded and an additional 100 000 hectares are esti-
mated to be lost each year due to an expanding cycle of
catastrophic fire and invasive plant spread in which large,
frequent fires lavour invasive plant spread and the spread
of invasive plants favours larger and more frequent fires
(I>’Antonio & Vitousek 1992). Stakeholder groups in this
region recognize that active restoration is critical 1o stem
the loss of these drylands and avoid collapse of a
keystone agricultural industry and the associated ecosys-
tem services these drylands provide (Burcau of Land
Management 2001). Restoration in these systems typically
centres on native plant sceding following catastrophic
wildfirc as & means to stabilize soil, recover the [orage
base and break invasive plant driven changes in fire
regimes. Over US $100 million is spent anuually by
government agencies and conservation groups to restore
these degraded drylands yet fess than 10% of these resto-
ration cfforts are successful (Sheley et af. 2011).

The seriousness of these restoration failures is widely
recognized, and dryland researchers and managers in the
western United States have spent decades trying {o improve
success rates of native plant restoration. This effort has
yielded a large number of site-specific empirical studies
identifying mechanisms that influence individual plant
processes such as establishment, growth and survival
(Hardegree er af. 2011). At the same thne, researchers and
managers have developed over 2000 State-and-Transition
models (STMs) that provide the conceptual basis for how
dryland restoration and management should be imple-
mented (e.g. Fig. 2) (Knapp ef ol 2011). While these
efforts liave contribuled to improved understanding of
dryland restoration, the inability to quantitatively integrate
individual studies on scedling establishment and link
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conceptual STMs to these mechanistic studies has limited
the ability of researchers and practitioners to make sus-
tained, broud-scule advances in improving native plant res-
toration outcomes. A quantitative systems framework thai
can organize and integrate current understanding across
individual studies, identify key knowledge gaps and direct
future research and management efforts may be onc way
to foster lurge advances in dryland restoration.

We developed and applied a quantitative systems model
#s @ mechanism to facilitate, integrate and advance
research on native plant restoration in sage steppe systems
(Fig. 4). This model structure closely follows approaches
used in invasive plant management and conservation biol-
ogy, and here, we show how this basic structure can be
used as a systems approach to address restoration issues.
Population growth rale and abundance of seeded species
is identified as the emergent property of concern in this
model. This emergent properly was chosen because STMs
and assessments of dryland restoration success centre on
the abundance and persistence of dominant native plant
species. The second level of this model identifies ecolagical
processes and conditions that influence the transition of
native plant species across key life stages. The third level
of this model identifies manugement lools and strategies
that can alter ecological processes and conditions that
influence life stage transitions. We used the existing litera-
ture to identify the most likely ecological processes and
conditions that influence life stage transitions as well as
the available management tools and strategies that may
alter these eccological processes and conditions. This
systems  model can  complement the current STM
approach used by munagers and advance this conceptual
framework by providing a quantitative and mechanistic
basis to predict how management may influence restora-
tion and changes in plant community states, While this
model is relatively simple, it contains the key attributes of
a systems approach, Namely, the mulliple ecological pro-
cesses across levels of organization are quantitatively
linked allowing probabilistic and predictive estimates of
emergent properties to be made under observed and novel
conditions and sensitivity analysis to be performed,

To develop parameter estimates for the population
moedel, we monifored transition probabilities for the key
fife stages shown in Fig. 4 for three dominant restoration
species at one site for 3 years as well as for a mixture of
restoration species at four sites in | year (James, Svejcar
& Rinella 2011). Sensitivity analysis demonstrated that
the transition from a germinated seed to an emerged sced-
ling was the most important transition determining the
abundance of native species as well as variation in density
across species, sites and years with conditional survival
probabilities during this critical life stage transitions vary-
ing from less than 0-05 to more than 0-7 depending on
species, year and site. With the systems model, we then
used the existing literature and experimental manipula-
tions to identify suites of processes and conditions that
may influcnce this critical life stage transition. Winter time
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“Processesfconditions:

Sprlng d roueh

- Progesses/conditions

Fig. 4. An example of a restoration model developed based on a systems approach. The model contains three hierarchically linked com-
ponents. The mode! component highest on the hicrarchy (population growth model, centee of figure) directly yields plant populaticn
growth rate or abundance as possible emergent properlies. This model describes major demographic stages {e.g. seed bank, germinated
seed} and transition probabilities between stages (e.g. G, Fan, E3). The next fevel of the hicrarchy is the key ecological processes ard con-
ditions that influence demographic transition probabilities, The third level of the hierarchy is management tools and strategies that can
alter and mitigate specific ecological processes and conditions that influence Lransition probabilities between demographic stages. The
overatt goal is to quantitatively link key ecological processes or conditions to (ransition probabilitics lo identify mujor drivers of popula-
tion growth rate. This assessment is then used to puide selection and development of management sirategies that mitigale or alier key

processes und conditions,

soil temperature and moisture conditions, fungal pathogen
attack on germinated sced, and formation of sofl surface
crusts have been identified in the literature as likely pro-
cesses and conditions that would have a major influence
on these transition probabilities (Crist & Friese 1993;
Belnap 2003; Hardegree, Flerchinger & Yan Vactor 2003).
In the case ol soil surface crusts and soil microclimatic
conditions, process-level models are available that predict
the magnitude of the effect of these factors on transition
probabilities (Frelich, Jensen & Gifford 1973; Belnap
2003; Hardegree, Flerchinger & Van Vactor 2003). The
linkages between the plant population models and the soil
processes models have allowed researchers and managers
to iden{ify critical knowledge gaps and develop new
managemeni iools. This fncludes the use of micraclimate
field data to develop predictions of seedbed fuvourability
for emergence and determine how this wvaries among
native species (Hardegree ef al. 2011), development of
seed coating technology that reduce lungal attack and
increase the ability of native species to emerge in soils
with a pronounced vesicular layer (Madsen et af. 2012),
as well as identification and selection of functional traits
that maximize emergence probability (Rowe & Leger
2011). Collectively, this systems approach complements
and advances the conceptual STMs commonly used to
guide restoration by providing a quantitative framework

for predicting effects of management and ecological con-
ditions on restoration outcomes and vegelation state
changes.

Concluding remarks

Ecosystem restoration involves recreating complex, linked,
biotic and abiotic networks, Achieving this goal in
dryland ecosystems has been difficult, and even restoring
system components (e.g. establishing plants) has been clu-
sive. Although still an emerging science, restoration ecol-
ogy has focussed heavily on the use of conceptual theories
and models to veverse ecosystem degradation. Conceptual
models have been useful for formulating general guide-
lines about how dryland ecosystems may respond to man-
agement, However, the chronic and widespread dryland
restoration failures observed worldwide demand that we
move from conceptual models that allow formulation of
general principles and towards quantitative systems mod-
¢ls that allow practitioners lo identify and manipulate spe-
cific ecological processes driving restoration oulcomes.

As we have shown in our case study, quantitative sys-
tems models can be developed to greatly accelerate under-
standing and the development of practical management
solutions for specific restoration challenges. A reasonable
question, liowever, is how we transfer this general concept
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and case study to different restoration scenarios. Similar to
our approach, most of the successful applications of sys-
tems models in the literature use well-developed conceptual
nmodels as a basis. These conceptual models are useful for
indicating direction and wmagnitude of potential model
components and reasonable boundaries for potential pro-
cesses and mechanism that might be included in the model.
The second common thread among successfui examples is
the ability to identify a central emergent systems property
(in our case study, here it was native plant density) and
quantify the major direct and indirect processes and mech-
anisms that drive most of the variation in this property.
Systems models are not focussed on exact predictions so
not every process and mechanism needs to be included,
Instead, these models aim te include a minimum subset of
madel components that allow predictions to be generated
us 4 distribution of likely values. How broad or narrow the
distribution lies is dependent on management objectives
and {olerance for uncertainty in management outcomes.

There are trade-offs in using systems models, however,
and not every restoration challenge lends itsell o a sys-
tems approach. Sysiems models are developed for a spe-
cific systemy, and individual models have limited ability to
generate general principles (Evans 2012), if system bound-
aries and system heterogeneity are poorly defined, these
guantitative models may poorly predict system dynamics,
In addition, if general management or restoration princi-
ples are poorly developed, it may be dilficult to reliably
construct a quantilative modsl that accurately predicts
system dynamics. Systems models also are data intensive,
taking time and resources to develop {Norris 2012). This
large resource demand requires coordination and data
sharing among rescarchers and sustaived funding of
research to develop the appropriate systems meodel. Not
every restoration issue has this type ol sustained support.
Lastly, as occurs with all modelling cfforts, systems mod-
¢ls require researchers to decide which processes, mecha-
nisms and syslem componends lo include and these
decisions  ultimately influence model outcomes (Evans
2012). Moving forward, restoralion ecologist and practi-
tioners will need to consider how these potential limita-
tions associated with systems models relate to the specific
restoration challenge on hand.

Healthy ecosystems are esseniial for sustaining life but
are being degraded at alarming rates worldwide (Travis
2003; Hindmarch, Harris & Morris 2006). Our ability to
restore degraded ecosystems is central to regaining the
essential goods and services provided by these ecosystems.
In spite of substantial importance and effort, restoration
of degraded dryland ecosystems remains mostly unattain-
able (Carrick & Kruger 2007, Hardegree er al. 2011,
Sheley er of. 2011), Conceptual models have provided a
basis for understanding and improving dryfand restora-
tion success. To be useful to managers, these models will
need to be advanced to allow for identificalion and devel-
opment of site-specific solutions to restoring ecosystem
structure and function. Great opportunities for improving
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our ability to restore dryland ecosystems exist by combin-
ing conceptual  models  with  systems  meodelling
approaches. Systems models can help overcome restora-
tion limitations by allowing site-specific outcomes to be
forecasted and enhancing our ability to identify and solve
site-specific problems.
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